D

FIRST SEMESTER M.TECH DEGREE EXAMINATION, DECEMBER 2015

(Mechanical Engineering)

(Common to Thermal Science & Thermal Engineering)

(01ME6205: Incompressible and Compressible Flow)

Max. Marks: 60

Answer any two full questions from each Part

Part A

1. Define stress tensor and explain its significance.

(4 Marks)

TRIVANDRUM-1

- b) Derive Reynold's transport theorem and derive the differential form of Energy equation. (5 Marks)
- 2. What is a stress field (4 Marks)
- Derive the complex flow potentials of (i) Point source (ii) Point vortex and (fii) a Doublet flow. (5 Marks)
- 3. a) Derive the exact solutions of Coutte flow. (5 Marks)
- b) Show that for potential flow past a two-dimensional cylinder, the variation of pressure coefficient is given by $C_P=1-4\sin^2\theta$. (4 Marks)

Part B

4. a) Explain Magnus effect

(4 Marks)

- b) Obtain the expression for the velocity profile for axial flow through annular space between two co-axial cylinders. (5 Marks)
- 5. a) Explain about Vortex Shedding.

(4 Marks)

b) Obtain the Blasius solution for flow past a flat plate. Also find expressions for wall shear stress, local skin friction coefficient and total drag force.

(5 Marks)

- 6. a) Obtain the expression for the velocity profile for doublet flow(4 Marks)
 - b) Derive Von Karman momentum integral equation

(5 Marks) .

Part C

7. a) Explain Prandtl mixing length.

(5 Marks)

b) If air flows in a 20 mm diameter constant area duct at velocity of 125 m/s with a static temperature of 300 K and a static pressure of 300kPa, find the rate of heat input required to choke the flow.

(7 Marks)

- 8. a) Bring out the effects of heat addition and heat extraction on the flow velocity in a constant area duct Rayleigh flow when the flow is initially supersonic.

 (6 Marks)
 - b) Explain Boussineq's hypothesis.

(6 Marks)

- 9. Air enters a constant area duct at 0.3 MPa and 15 °C and is heated while flowing. The initial Mach number is 0.2. The final total temperature is 897 °C. What are the final total pressure and Mach number? (7 Marks)
 - b) Explain the significance of influence coefficients in the analysis of compressible flow. (5 Marks)

KRO